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UNIT–V 

MachineIndependentOptimization.TheprinciplesourcesofOptimization,peepholeOptimization,Introd

uctionto Date flowAnalysis. 

 

UNIT5 

MACHINEINDEPENDENTOPTIMIZATION 

Eliminationofunnecessary instructionsin objectcode, orthereplacementof 

onesequenceofinstructions by a faster sequence of instructions that does the same thing is usually 

called "codeimprovement"or "codeoptimization." 

Optimizationsareclassifiedintotwocategories. 

1. Machineindependentoptimizations: 

Machineindependentoptimizationsareprogramtransformationsthatimprovethetargetcode

without taking intoconsideration any properties ofthe target machine 

 
2. Machinedependantoptimizations: 

Machinedependantoptimizationsarebasedonregisterallocationandutilizationofspecialmachi

ne-instructionsequences. 

 
ThePrincipalSourcesofOptimization 

A transformation of a program is called local if it can be performed by looking only at 

thestatementsinabasicblock;otherwise,itiscalledglobal.Manytransformationscanbeperformedatbothth

elocal and globallevels. 

 
Function-Preserving Transformations: There are a number of ways in which a compiler can 

improveaprogram without changing thefunction it computes. 

: Common sub expression 

eliminationCopypropagation, 

Dead-code 

eliminationConstantfo

lding 

CommonSubexpressionselimination: 

An occurrence of an expression E is called a common sub-expression if E was 

previouslycomputed, and the values of variables in E have not changed since the previous computation. 

We canavoidrecomputing theexpression if wecan usethepreviously computed value. 

• Forexample 

t1: = 

4*it2: = a 

[t1]t3: = 

4*jt4: = 

4*it5:=n 

t6:=b[t4]+t5 
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Theabove codecanbeoptimized usingthecommon sub-expressioneliminationas 

t1:=4*it2: 

= a [t1]t3: 

=4*jt5:= n 

t6:=b[t1]+t5 

 
Thecommonsubexpressiont4:=4*iiseliminatedasitscomputationisalreadyint1andthevalueofiisnot been 

changedfromdefinition to use. 

CopyPropagation: 

Assignments of the form f : = g called copy statements, or copies for short. The idea behind 

thecopy-propagation transformation is to use g for f, whenever possible after the copy statement f: = 

g.Copypropagation meansuseof onevariable instead of another. 

 
• Forexample: 

x=Pi; 

A=x*r*r; 

 
Theoptimizationusing copypropagationcan 

bedoneasfollows:A=Pi*r*r;Herethe variablexis eliminated 

 
Dead-CodeEliminations: 

Avariableisliveatapointinaprogramifitsvaluecanbeusedsubsequently;otherwise,itisdeadat that 

point. 

Example: 

i=0; 

if(i==1) 

{ 

a=b+5; 

} 

 
Here, ‘if’statementisdeadcodebecausethisconditionwillnevergetsatisfied. 

Constantfolding: 

 
Deducing at compile time that the value of an expression is a constant and using the 

constantinstead is known as constant folding. One advantage of copy propagation is that it often turns 

the copystatementinto dead code. 

Forexample, 

a=3.14157/2 can be replaced 

bya=1.570 
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LoopOptimizations: 

 
Inloops, especiallyinthe innerloops, programstend tospendthe bulk of theirtime. Therunning time 

of a program may be improved if the number of instructions in an inner loop is decreased,evenif 

weincreasetheamount of codeoutsidethat loop. 

Threetechniques areimportant forloop optimization: 

1. Codemotion, which moves codeoutsidealoop; 

2. Induction-variable elimination, which we apply to replace variables from inner 

loop.3.Reductioninstrength,whichreplaces expensiveoperationbyacheaperone,suchas a 

multiplicationbyanaddition. 

 

Fig.5.2 Flow graph 

CodeMotion: 

 

This transformation takes an expression that yields the same result independent of the number 

oftimes a loop is executed (a loop-invariant computation) and places the expression before the loop. 

Notethat the notion “before the loop” assumes the existence of an entry for the loop. For example, 

evaluationoflimit-2 is a loop-invariant computation in thefollowing while-statement: 

 
while(i <=limit-2) 
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Codemotion willresultin theequivalent of 

 
t= limit-2; 

while(i<=t)/*statementdoesnot changelimitort*/ 

 
InductionVariables: 

Loops are usually processed inside out. For example consider the loop around B3. Note that 

thevalues of j and t4 remain in lock-step; every time the value of j decreases by 1, that of t4 decreases 

by 4because4*j is assigned to t4. Suchidentifiers are called induction variables. 

 
When there are two or more induction variables in a loop, it may be possible to get rid of all 

butone, by the process of induction-variable elimination. For the inner loop around B3 in Fig.5.3 we 

cannotgetrid of either j ort4completely; t4 is usedin B3 and j in B4. 

 
However, we can illustrate reduction in strength and illustrate a part of the process of induction-

variableelimination. Eventuallyj willbeeliminated whenthe outerloop ofB2-B5 isconsidered. 

 
Example: 

 
As the relationship t4:=4*j surely holds after such an assignment to t4 in Fig. and t4 is 

notchanged elsewhere in the inner loop around B3, it follows that just after the statement j:=j-

1therelationship t4:= 4*j-4 must hold. We may therefore replace the assignment t4:= 4*j by t4:= t4-4. 

Theonly problem is that t4 does not have a value when we enter block B3 for the first time. Since we 

mustmaintain the relationship t4=4*j on entry to the block B3, we place an initializations of t4 at the 

end oftheblock wherej itselfis initialized, shown bythedashed addition toblock B1 in Fig.5.3. 

 
Thereplacementofamultiplicationbyasubtractionwillspeeduptheobjectcodeifmultiplicationtakes 

moretime than addition or subtraction 

 
ReductionInStrength: 

 
Reduction in strength replaces expensive operations by equivalent cheaper ones on the 

targetmachine. Certain machine instructions are considerably cheaper than others and can often be used 

asspecial cases of more expensive operators. For example, x² is invariably cheaper to implement as 

x*xthan as a call to an exponentiation routine. Fixed-point multiplication or division by a power of two 

ischeapertoimplementasashift.Floating-pointdivisionbyaconstantcanbeimplementedasmultiplicationby 

aconstant, which may becheaper. 
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Fig.5.3B5and B6aftercommonsubexpressionelimination 

 

 

 

 

PEEPHOLEOPTIMIZATION 

A statement-by-statement code-generations strategy often produces target code that 

containsredundant instructions and suboptimal constructs. The quality of such target code can be 

improved byapplying“optimizing” transformations to the target program. 

A simple but effective technique for improving the target code is peephole optimization, 

Amethod for trying to improving the performance of the target program by examining a short sequence 

oftarget instructions (called the peephole) and replacing these instructions by a shorter or faster 

sequence,wheneverpossible. 

Thepeepholeisasmall,moving windowonthetargetprogram. 

Characteristics of peephole 

optimizations:Redundant-

instructions eliminationFlow-of-

control 

optimizationsAlgebraicsimplification

s 

UseofmachineidiomsU

nreachablecode 
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Redundant-instructionselimination 

seetheinstructionssequence 

(1) MOVR0,a 

(2) MOVa,R0 

 
we can delete instructions (2) because whenever (2) is executed. (1) will ensure that the value 

ofa is already in register R0.If (2) had a label we could not be sure that (1) was 

alwaysexecutedimmediatelybefore(2)and so wecould not remove(2). 

 
UnreachableCode: 

 
Another opportunity for peephole optimizations is the removal of unreachable instructions. 

Anunlabeledinstructionimmediatelyfollowinganunconditionaljumpmayberemoved.Thisoperationcan be 

repeated to eliminate a sequence of instructions. For example, for debugging purposes, a largeprogram 

may have within it certain segments that are executed only if a variable debug is 1. In C, 

thesourcecodemight look like: 

 
#definedebug0 

…. 

 
If(debug ) { 

Printdebugginginformation 

 
} 

Intheintermediate representationsthe if-statementmaybetranslatedas: 

 
Ifdebug =1 goto L1 goto L2 

 
L1:printdebugginginformationL2: ........................................... (a) 

 
Oneobviouspeepholeoptimizationistoeliminatejumpsoverjumps.Thusnomatterwhatthevalueofdebu

g; (a) can bereplaced by: 

 
Ifdebug≠1 gotoL2 

Printdebugginginformation

L2: ............................................ (b) 

 
Ifdebug≠0 gotoL2 

Printdebugginginformation

L2: ............................................ (c) 

 
Astheargumentof thestatement of(c) evaluatesto aconstant trueit canbereplaced 
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BygotoL2.Thenallthestatementthatprintdebuggingaidsaremanifestlyunreachableandcanbeelimina

tedoneat a time. 

 
Flows-Of-ControlOptimizations: 

Theunnecessaryjumpscanbeeliminatedineithertheintermediatecodeorthetargetcodebythefollowin

g types ofpeephole optimizations. Wecan replacethe jump sequence 

 
gotoL1 

…. 

 
L1:gotoL2 (d) 

bythesequence 

gotoL2 

…. 

 
L1:gotoL2 

 
IftherearenownojumpstoL1,thenitmaybepossibletoeliminatethestatementL1:gotoL2providedit is preceded 

by an unconditional jump.Similarly, thesequence 

 
if a< b gotoL1 

…. 

 
L1:gotoL2(e) 

 
canbereplacedby 

Ifa < b goto L2 

 
…. 

 
L1:goto L2 

 
Ø Finally,supposethereisonlyonejumptoL1andL1isprecededbyanunconditionalgoto. 

Thenthesequence 

 
gotoL1 

 
L1:ifa < bgotoL2 (f)L3: 

 
maybereplacedby 
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If a < b goto 

L2gotoL3 

 
……. 

 

L3: 

 
Whilethenumberofinstructionsin(e)and(f)isthesame,wesometimesskiptheunconditionaljumpin(f), but 

never in (e).Thus (f) is superiorto (e) inexecution time 

 
AlgebraicSimplification: 

There is no end to the amount of algebraic simplification that can be attempted through 

peepholeoptimization. Only a few algebraic identities occur frequently enoughthat it is worth 

consideringimplementingthem. For example, statements suchas 

x := x+0 

orx := x * 

1 

 
areoftenproducedbystraightforwardintermediatecode-

generationalgorithms,andtheycanbeeliminatedeasily through peephole optimization. 

 
ReductioninStrength: 

 
Reduction in strength replaces expensive operations by equivalent cheaper ones on the 

targetmachine. Certain machine instructions are considerably cheaper than others and can often be used 

asspecialcases of moreexpensive operators. 

 
For example, x² is invariably cheaper to implement as x*x than as a call to an 

exponentiationroutine. Fixed-point multiplication or division by a power of two is cheaper to implement 

as a shift.Floating-point division by a constant can be implemented as multiplication by a constant, 

which may becheaper. 

 
X2 →X*X 

 
Useof MachineIdioms: 

 
The target machine may have hardware instructions to implement certain specific 

operationsefficiently. For example, some machines have auto-increment and auto-decrement addressing 

modes.Theseaddorsubtractonefromanoperandbeforeorafterusingitsvalue.Theuseofthesemodesgreatly 

improves the quality of code when pushing or popping a stack, as in parameter passing. Thesemodescan 

also be used in codeforstatements like i : =i+1. 

 
i:=i+1→i++ 
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i:=i-1 → i-- 
 

IntroductiontoDateflowAnalysis. 

 

1 TheData-FlowAbstraction 

2 TheData-FlowAnalysisSchema 

3 Data-

FlowSchemasonBasicBlocks4Reachin

g Definitions 

5 Live-VariableAnalysis 

6 AvailableExpressions 

 

 
"Data-flow analysis" refers to a body of techniques that derive information about the flow of data 

alongprogramexecution paths. 

1. TheData-FlowAbstraction 

The execution of a program can be viewed as a series of transformations of the program 

state,which consists of the values of all the variables in the program. Each execution of an intermediate-

codestatement transforms an input state to a new output state. The input state is associated with the 

programpointbefore the statementand theoutputstateis associated withtheprogram pointafter the 

statement. 

When we analyze the behavior of a program, we must consider all the possible sequences 

ofprogram points ("paths") through a flow graph that the program execution can take. We then 

extract,from the possible program states at each point, the information we need for the particular data-

flowanalysis problem we want to solve. In more complex analyses, we must consider paths that jump 

amongtheflow graphs for various procedures, ascalls and returns areexecuted. 

Within one basic block, the program point after a statement is the same as the program 

pointbeforethenext statement. 

IfthereisanedgefromblockB1 toblockB22,thentheprogrampointafterthelaststatementofB1may 

befollowed immediatelyby the program point beforethefirst statement of B2. 

Thus, we may define anexecution path (or just path) from point pito point pn tobea 

sequenceofpointspi,p2,...  ,pn such thatforeach i  =1,2, ... ,n -1, either 

1. Pi is the point immediately preceding a statement and pi+i is the point immediately 

followingthatsame statement, or 

2.piis theend ofsomeblock and pi+1  is thebeginning ofasuccessor block. 
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.Indata-flowanalysis,wedonotdistinguishamongthepathstakentoreachaprogrampoint.Moreover, we do 

not keep track of entire states; rather, we abstract out certain details, keeping only thedata we need for 

the purpose of the analysis. Two examples will illustrate how the same program statesmaylead to 

different information abstractedat a point. 

1. To help users debug their programs, we may wish to find out what are all the values a variable 

mayhave ata program point, and where these values may be defined. For instance, we may summarize 

allthe program states at point (5) by saying that the value of a is one of {1,243}, and that it may be 

definedbyoneof{^1,^3}.Thedefinitionsthatmayreachaprogrampointalongsomepathareknownasreaching 

definitions. 

2. Suppose, instead, we are interested in implementing constant folding. If a use of the variable x 

isreachedbyonlyonedefinition,andthatdefinitionassignsaconstantto x, thenwecansimplyreplace x by the 

constant. If, on the other hand, severaldefinitions of x may reach a single programpoint, then we cannot 

perform constant folding on x. Thus, for constant folding we wish to find thosedefinitions that are the 

unique definition of their variable to reach a given program point, no 

matterwhichexecutionpathistaken.Forpoint(5)ofFig.9.12,thereisnodefinitionthat must bethedefinition of 

a at that point, so this set is empty for a at point (5). Even if a variable has a uniquedefinitionata 

point,thatdefinitionmustassigna constanttothevariable.Thus,we maysimplydescribe certain variables as 

"not a constant," instead of collecting all their possible values or all theirpossibledefinitions. 

2. TheData-FlowAnalysisSchema 

, we associate with every program point a data-flow value that represents an abstraction of the set of 

allpossible program states that can be observed for that point.The set of possible data-flow values is 

thedomain for this application. For example, the domain of data-flow values for reaching definitions is 

thesetof all subsets of definitions in the program. 
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A particular data-flow value is a set of definitions, and we want to associate with each point in 

theprogramthe exactsetof definitionsthatcanreachthatpoint.Asdiscussedabove,the choice ofabstraction 

depends on the goal of the analysis; to be efficient, we only keep track of information that isrelevant. 

Denotethedata-flowvaluesbeforeandaftereachstatementsbyIN[S]andOUT[s],respectively.Thedata-flow 

problem is to find a solution to a set of constraints on the IN[S]'S and OUT[s]'s, for allstatements s. 

There are two sets of constraints: those based on the semantics of the statements 

("transferfunctions")and thosebased on the flow ofcontrol. 

TransferFunctions 

The data-flow values before and after a statement are constrained by the semantics of the statement. 

Forexample, suppose our data-flow analysis involves determining the constant value of variables at 

points.If variable a has value v before executing statement b = a, then both a and b will have the value v 

afterthestatement.Thisrelationshipbetweenthedata-flowvaluesbeforeandaftertheassignmentstatementis  

knownas  atransfer function. 

Transfer functions come in two flavors: information may propagate forward along execution paths, or 

itmay flow backwards up the execution paths.In a forward-flow problem, the transfer function of 

astatement s, which we shall usually denote f(a), takes the data-flow value before the statement 

andproducesanew data-flow value after thestatement.That is, 

Conversely, in a backward-flow problem, the transfer function f(a) for statement 8 converts a data-

flowvalueafter thestatementto a new data-flowvaluebeforethestatement. That is, 

 

 
Control– FlowConstraints 

The second set of constraints on data-flow values is derived from the flow of control. Within a 

basicblock, control flow is simple. If a block B consists of statements s1, s 2 , • • • ,sn in that order, then 

thecontrol-flowvalue out ofSi is thesame as the control-flowvalue into Si+i.That is, 
 

 
However, control-flow edges between basic blocks create more complex constraints between the 

laststatement of one basic block and the first statement of the following block. For example, if we 

areinterested in collecting all the definitions that may reach a program point, then the set of 

definitionsreaching the leader statement of a basic block is the union of the definitions after the last 

statements ofeachof thepredecessorblocks. Thenext sectiongives thedetails ofhowdata flows 

amongtheblocks. 
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3. Data-FlowSchemasonBasicBlocks 

While a data-flow schema   involves data-flow values at each point in the program, we can save 

timeand space by recognizing that what goes on inside a block is usually quite simple. Control flows 

fromthebeginningtotheendoftheblock,withoutinterruptionorbranching.Thus,wecanrestatetheschema in 

terms of data-flow values entering and leaving the blocks. We denote the data-flow valuesimmediately 

before andimmediately after each basic block B by m[B] and 0 U T [ S ] , respectively.The constraints 

involving m[B] and 0UT[B] can be derived from those involving w[s] and OUT[s] forthevarious 

statements s in Bas follows. 

Suppose block B consists of statements s 1 , . . ., sn, in that order.If si is the first statement of basicblock 

B, then m[B] =I N [ S I ] , Similarly, if snis the last statement of basic block B, then OUT[S] =OUT[s„] 

. The transfer function of a basic block B, which we denote fB, can be derived by 

composingthetransferfunctionsofthestatementsinthe 

block.Thatis,letfa.bethetransferfunctionofstatementst.Thenof statement si. Then fB = f,sn, o . . . o f,s2, o 

fsl. . The relationship between thebeginningand end oftheblock is 
 

 
Theconstraintsduetocontrolflowbetweenbasicblockscaneasily   be   rewritten   bysubstituting IN[B] and 

OUT[B] for IN[SI ] and OUT[sn], respectively. For instance, if data-flow valuesare information about 

the sets of constants that may be assigned to a variable, then we have a forward-flowproblemin which 
 

 
When the data-flow is backwards as we shall soon see in live-variable analy-sis, the equations 

aresimilar,but with the roles oftheIN's and OUT's reversed. Thatis, 

 
 

 

Unlike linear arithmetic equations, the data-flow equations usually do not have a unique solution. 

Ourgoal is to find the most "precise" solution that satisfies the two sets of constraints: control-flow 

andtransfer constraints. That is, we need a solution that encourages valid code improvements, but does 

notjustifyunsafetransformations— those that changewhat theprogramcomputes. 

 

 

 
 

4. ReachingDefinitions 
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"Reaching definitions" is one of the most common and useful data-flow schemas. By knowing where 

ina program each variable x may have been defined when control reaches each point p, we can 

determinemanythingsabout x. Forjusttwoexamples,acompilerthenknowswhether x isaconstantatpoint p, 

and a debugger can tell whether it is possible for x to be an undefined variable, should x be usedat p. 

Wesayadefinition dreaches apoint p ifthereisa   path   from   the   point   immediatelyfollowing d to p, 

such that d is not "killed" along that path. We kill a definition of a variable x if there isany other 

definition of x anywhere along the path .if a definition d of some variable x reaches point p,thendmight 

be theplaceat which thevalue ofxused atp was last defined. 

Adefinitionofavariable x isastatementthatassigns,ormayassign,avalueto x. Procedureparameters, array 

accesses, and indirect references all may have aliases, and it is not easy to tell if 

astatementisreferringtoaparticularvariablex.Programanalysismustbeconservative;ifwedonotnote that the 

path may have loops, so we could come to another occurrence of d along the path, whichdoes not"kill"d. 

know whether a statement s is assigning a value to x, we must assume that it may assign to it; that 

is,variable x after statement s may have either its original value before s or the new value created by s. 

Forthe sake of simplicity, the rest of the chapter assumes that we are dealing only with variables that 

haveno aliases. This class of variables includes all local scalar variables in most languages; in the case 

of CandC++, local variableswhoseaddresses havebeen computed at somepoint areexcluded. 

TransferEquationsforReachingDefinitions 

Startby examining thedetails of asinglestatement. Consideradefinition 
 

 
Here,andfrequentlyinwhatfollows,+isusedasagenericbinaryoperator.Thisstatement"generates"adefinition 

d of variableu and "kills" all the 

otherdefinitionsintheprogramthatdefinevariable u, whileleavingthere-

mainingincomingdefinitionsunaffected. Thetransfer functionofdefinitiond thuscan beexpressed as 

 

 

where gend = {d}, the set of definitions generated by the statement, and killd is the set of all 

otherdefinitionsof u in the program. 

Thetransferfunctionofabasicblockcanbefoundbycomposingthetransferfunctionsofthestatements 

contained therein. The composition of functions of the form (9.1), which we shall refer to as"gen-kill 

form," is also of that form, as we can see as follows. Suppose there are two functions fi(x) =gen1U (x-

kill1) andf2(x) =gen2 U(x —kill2). Then 
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This rule extends to a block consisting of any number of statements. Suppose block B has n 

statements,withtransfer functions fi(x) =geni U (x —kilh) for i= 1,2, ... , n.Then the transfer 

functionforblockBmay bewrittenas: 
 

 

 

Thus, like a statement, a basic block also generates a set of definitions and kills a set of definitions. 

Thegen set contains all the definitions inside the block that are "visible" immediately after the block — 

werefertothemasdownwardsexposed.Adefinitionisdownwardsexposedinabasicblockonlyifitis 
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not "killed" by a subsequent definition to the same variable inside the same basic block. A basic 

block'skill set is simply the union of all the definitions killed by the individual statements. Notice that 

adefinition may appear in both the gen and kill set of a basic block. If so, the fact that it is in gen 

takesprecedence,becausein gen-kill form, thekillset is applied beforethe gen set. 

Example9 . 1 0: Thegen setforthe basic block 
 

is{d2}sinced1isnotdownwardsexposed.Thekillsetcontainsbothd1andd2,sinced1killsd2and vice 

versa.Nonetheless, since the subtraction of the kill set precedes the union operation with thegenset, 

theresult of thetransfer functionfor this block always includes definition d2. 

Control-FlowEquations 

Next, we consider the set of constraints derived from the control flow between basic blocks. Since 

adefinition reaches a program point as long as there exists at least one path along which the 

definitionreaches, O U T [ P ] C m[B] whenever there is a control-flow edge from P to B. However, 

since adefinition cannot reach a point unless there is a path along which it reaches, w[B] needs to be no 

largerthantheunion ofthereaching definitions ofall the predecessor blocks.That is, it issafeto assume 
 

 
We refer to union as the meet operator for reaching definitions. In any data-flow schema, the 

meetoperatoristheoneweusetocreateasummaryofthecontributionsfromdifferentpathsattheconfluenceoftho

sepaths. 

IterativeAlgorithmforReachingDefinitions 

Weassumethateverycontrol-

flowgraphhastwoemptybasicblocks,anENTRYnode,whichrepresentsthestartingpointofthegraph,andanE

XITnodetowhichallexitsoutofthegraphgo.Since no definitions reach the beginning of the graph, the 

transfer function for the ENTRYblock is asimpleconstant function that returns0 as ananswer.Thatis, O 

UT [ ENTR Y ]=0. 

Thereachingdefinitionsproblemis definedbythefollowingequations: 
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These equations can be solved using the following algorithm. The result of the algorithm is the 

leastfixedpoint of the equations, i.e., the solution whose assigned values to the IN ' s and OUT's is 

containedin the corresponding values for any other solution to the equations. The result of the algorithm 

below isacceptable, since any definition in one of the sets IN or OUT surely must reach the point 

described. It isadesirable solution, sinceitdoes not includeanydefinitionsthat wecan besuredo not reach. 

Al g ori th m 9 .1 1 :Reachingdefinitions. 

INPUT:Aflow graphfor whichkills and genBhavebeencomputedfor each block B. 

OUTPUT:IN[B]and OUT [B], thesetofdefinitionsreachingtheentryandexitofeachblockBof 

theflowgraph. 

METHOD:Weuseaniterativeapproach,inwhichwestartwiththe"estimate" OUT[JB]=0 forall B and 

converge to the desired values of IN and OUT. As we must iterate until the IN ' s (and hencethe OUT's) 

converge, we could use a boolean variable change to record, on each pass through theblocks, whether 

any OUT has changed. However, in this and in similar algorithms described later, weassumethat 

theexact mechanismforkeeping trackof changesis understood,and weelidethose details. 

The algorithm is sketched in Fig. 9.14. The first two lines initialize certain data-flow values.4 Line 

(3)starts the loop in which we iterate until convergence, and the inner loop of lines (4) through (6) 

appliesthedata-flowequations to every block otherthanthe entry. • 

Algorithm 9.11 propagates definitions as far as they will go with-out being killed, thus simulating 

allpossible executions of the program. Algo-rithm 9.11 will eventually halt, because for every B, 

OUT[B]never shrinks; once a definition is added, it stays there forever. (See Exercise 9.2.6.) Since the 

set of alldefinitions is finite, eventually there must be a pass of the while-loop during which nothing is 

added 

toanyOUT,andthealgorithmthenterminates.WearesafeterminatingthenbecauseiftheOUT'shavenotchange

d, theIN' s will 
 

 
not change on the next pass. And, if the IN'S do not change, the OUT's cannot, so on all 

subsequentpassesthere can beno changes. 

The number of nodes in the flow graph is an upper bound on the number of times around the while-

loop. The reason is that if a definition reaches a point, it can do so along a cycle-free path, and 

thenumberofnodesinaflowgraphisanupperboundonthenumberofnodesinacycle-freepath.Each 
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time around the while-loop, each definition progresses by at least one node along the path in 

question,andit often progressesby morethan onenode, depending on theorder inwhichthe nodes 

arevisited. 

In fact, if we properly order the blocks in the for-loop of line (5), there is empirical evidence that 

theaverage number of iterations of the while-loop is under 5 (see Section 9.6.7). Since sets of 

definitionscan be represented by bit vectors, and the operations on these sets can be implemented by 

logicaloperationson thebit vectors,Algorithm 9.11 is surprisingly efficientin practice. 

Example9.12:Weshallrepresentthesevendefinitionsd1,d2,•••,d>jintheflowgraphofFig. 

9.13 by bit vectors, where bit i from the left represents definition d{. The union of sets is computed 

bytaking the logical OR of the corresponding bit vectors. The difference of two sets S — T is computed 

bycomplementing the bit vector of T, and then taking the logical AND of that complement, with the 

bitvectorfor S. 

Shown in the table of Fig. 9.15 are the values taken on by the IN and OUT sets in Algorithm 9.11. 

Theinitialvalues,indicatedbyasuperscript0,asinOUTfS]0,areassigned,bytheloopofline(2)ofFig. 

9.14. They are each the empty set, represented by bit vector 000 0000. The values of subsequent 

passesof the algorithm are also indicated by superscripts, and labeled IN [I?]1 and OUTfS]1 for the first 

passandm[Bf and OUT[S]2 for thesecond. 

Supposethefor-loop of lines(4)through(6)is executedwith Btakingon thevalues 
 

 
in that order. With B = B1, since OUT [ ENTRY ] = 0, [IN B1]-Pow(1) is the empty set, and 

OUT[P1]1isgenBl. This valuediffers from the previous value OUT[Si]0 , so 

 

 
wenow knowthereisa changeon thefirst round (and willproceed 

toasecondround).ThenweconsiderB =B2 and compute 
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This computation is summarized in Fig. 9.15. For instance, at the end of the first pass, OUT [ 5 2 ] 1 

=001 1100, reflecting the fact that d4 and d5 are generated in B2, while d3 reaches the beginning of 

B2andis not killed in B2. 

Notice that after the second round, OUT [ B2 ] has changed to reflect the fact that d& also reaches 

thebeginning of B2 and is not killed by B2. We did not learn that fact on the first pass, because the 

pathfromd6totheendofB2,whichisB3-»B4-

>B2,isnottraversedinthatorderbyasinglepass.Thatis,bythetimewelearnthatd$reachestheendofB4,wehavea

lreadycomputedIN[B2]andOUT[B2] onthe first pass. 

There are nochanges in any of the OUTsetsafter the secondpass.Thus, after a third pass, 

thealgorithmterminates, with theIN's and OUT's asin the final twocolumns of Fig. 9.15. 

5. Live-VariableAnalysis 
 

Some code-improving transformations depend on information computed in the direction opposite to 

theflow of control ina program; we shall examine one such example now. In live-variable analysis 

wewish to know for variable x and point p whether the value of x at p could be used along some path in 

theflowgraph starting at p.Ifso, wesayxisliveat p;otherwise, xis deadat p. 

An important use for live-variable information is register allocation for basic blocks. Aspects of 

thisissue were introduced in Sections 8.6 and 8.8. After a value is computed in a register, and 

presumablyused within a block, it is not necessary to store that value if it is dead at the end of the block. 

Also, if allregisters are full and we need another register, we should favor using a register with a dead 

value, sincethatvalue does not haveto bestored. 

Here, wedefinethedata-flowequationsdirectly intermsof IN [5]and OUTpB], which 

representthesetofvariablesliveatthepointsimmediatelybeforeandafterblockB,respectively.Theseequations 

can also be derived by first defining the transfer functions of individual statements andcomposingthem 

to createthe transfer function of abasic block.Define 

1.defBas the set of variablesdefined(i.e., definitely assigned values)in B prior to any use of thatvariable 

in B, and useB as the set of variables whose values may be used in B prior to any definition 

ofthevariable. 

Example 9 . 1 3 : For instance, block B2in Fig. 9.13 definitely uses i. It also uses j before 

anyredefinition of j, unless it is possible that i and j are aliases of one another.Assuming there are 

noaliases among the variables in Fig. 9.13, then uses2={i,j}- Also,B2clearly defines iand 

j.Assumingthereareno aliases, defB2=aswell. 

As a consequence of the definitions, any variable in useB must be considered live onentrance to blockB, 

while definitionsof variables in defBdefinitely are deadatthe beginning of B.Ineffect,membershipin 

defB"kills" any opportunityforavariableto belivebecauseof pathsthat begin atB. 

Thus,the equationsrelating defand useto theunknowns INand OUTaredefinedas follows: 
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The first equation specifies the boundary condition, which is that no variables are live on exit from 

theprogram. The second equation says that a variable is live coming into a block if either it is used 

beforeredefinition in the block or it is live coming out of the block and is not redefined in the block. The 

thirdequation says that a variable is live coming out of a block if and only if it is live coming into one of 

itssuccessors. 

 

 
The relationship between the equations for liveness and the reaching-defin-itions equations should 

benoticed: 

Both sets of equations have union as the meet operator. The reason is that in each data-

flowschema we propagate information along paths, and we care only about whether any path with 

desiredpropertiesexist, ratherthan whethersomething is truealongall paths. 

• However, information flow for liveness travels "backward," opposite to the direction of control 

flow,becauseinthisproblemwewanttomakesurethattheuseofavariablex atapointp 

istransmittedtoallpointsprior to p inan execution path,sothatwe may know atthe prior pointthat x 

willhave itsvalueused. 

To solve a backward problem, instead of initializing O U T [ E N T R Y ] , we initialize I N [EXIT ] 

.SetsI NandO U Thave their rolesinterchanged,anduse anddefsubstitute for genandkill,respectively. As 

for reaching definitions, the solution to the liveness equations is not necessarily unique,and we want the 

so-lution with the smallest sets of live variables. The algorithm used is essentially abackwardsversion 

ofAlgorithm 9.11. 

Algorithm9.14:Live-variableanalysis. 

INPUT:Aflowgraphwithdef anduse computedforeachblock. 

OUTPUT: m[B] and O U T [ £ ] ,the set of variables live on entry and exit of each block B of the 

flowgraph. 
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6.Available Expressions 

An expression x + y is available at a point p if every path from the entry node to p evaluatesx + y, 

andafterthelastsuchevaluationpriortoreachingp,therearenosubsequentassignmentstoxory.5Forthe 

available-expressions data-flow schema we say that a block kills expression x + y if it assigns (ormay 5 

N o te that, as usual in this chapter, we use the operator + as a generic operator, not necessarilystanding 

foraddition. 

assign) x or y and does not subsequently recompute x + y. A block generates expression x + y if 

itdefinitelyevaluates x+yand does not subsequently definex ory. 

Note that the notion of "killing" or "generating" an available expression is not exactly the same as 

thatfor reaching definitions. Nevertheless, these notions of "kill" and "generate" behave essentially as 

theydofor reaching definitions. 

The primaryuse ofavailable-expression information is for detecting global common subexpressions.For 

example, in Fig. 9.17(a), the expression 4 * i in block Bs will be a common subexpression if 4 * i 

isavailable at the entry point of block B3. It will be available if i is not assigned a new value in block 

B2,orif, as in Fig. 9.17(b),4 * iis recomputed afteri is assigned in B2. 
 

 

We can compute the set of generated expressions for each point in a block, working from beginning 

toendoftheblock.Atthepointpriortotheblock,noexpressionsaregenerated.IfatpointpsetSof 
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expressions is available, and q is the point after p, with statement x = y+z between them, then we 

formtheset of expressions available atq bythe following two steps. 

Addto S theexpressiony+ z. 

DeletefromSanyexpressioninvolvingvariablex. 

Note the steps must bedone in the correct order, as x could be the sameas y or z. After we reachtheend 

of the block, S is the set of generated expressions for the block. The set of killed expressions is 

allexpressions, say y + z, such that either y or z is defined in the block, and y + z is not generated by 

theblock. 

E x a m p l e 9.15 : Consider the four statements of Fig. 9.18. After the first, b + c is available. After 

thesecondstatement,a— d becomesavailable,but b+c isnolongeravailable,because b 

hasbeenredefined.Thethirdstatementdoesnotmake b+c 

availableagain,becausethevalueofcisimmediatelychanged. 

After the last statement, a — d is no longer available, because d has changed. Thus no expressions 

aregenerated,and all expressions involvinga, b, c, ord arekilled. 
 

Wecanfindavailableexpressionsinamannerreminiscentofthewayreach-ingdefinitionsarecomputed. 

Suppose U is the "universal" set of all expressions appearing on the right of one or 

morestatementsoftheprogram.ForeachblockB, letIN[B] 

bethesetofexpressionsinUthatareavailableatthepointjustbeforethebeginningof B. LetOUT[B] 

bethesameforthepointfollowingtheendofB. Definee.genBtobetheexpressionsgeneratedbyBand 

eJnillstobethesetofexpressionsin U killed in B. Note that I N , O U T , e_#en, and eJkill can all be 

represented by bit vectors. Thefollowingequations relatethe unknowns 
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T he above equations look almost identical to the equations for reaching definitions. Like 

reachingdefinitions, the boundary condition is OUT [ ENTRY ] = 0, because at the exit of the E N T R 

Y node,thereareno available expressions. 

The most important difference is that the meet operator is intersection rather than union. This operator 

isthe proper one because an expression is available at the beginning of a block only if it is available at 

theend of all its predecessors. In contrast, a definition reaches the beginning of a block whenever it 

reachesthe end ofany oneormoreof its predecessors. 

The use of D rather than U makes the available-expression equations behave differently from those 

ofreaching definitions. While neither set has a unique solution, for reaching definitions, it is the 

solutionwith the smallest sets that corresponds to the definition of "reaching," and we obtained that 

solution 

bystartingwiththeassumptionthatnothingreachedanywhere,andbuildinguptothesolution.Inthatway,wenev

erassumedthatadefinition d couldreachapoint p unlessanactual   pathpropagating d to p could be found. 

In contrast, for available expression equations we want the solutionwith the largest sets of available 

expressions, so we start with an approximation that is too large andworkdown. 

It may not be obvious that by starting with the assumption "everything (i.e., the set U) is 

availableeverywhere except at the end of the entry block" and eliminating only those expressions for 

which wecan discover a path along which it is not available, we do reach a set of truly available 

expressions. Inthe case of available expressions, it is conservative to produce a subset of the exact set of 

availableexpressions.Theargumentforsubsetsbeingconservativeisthatourintendeduseoftheinformationisto 

replace the computation of an available expression by a previously computed value. Not knowing 

anexpres-sion is available only inhibits us from improving the code, while believing an expression 

isavailablewhen it is not could causeus to change what theprogram computes. 
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Example9.16:Weshallconcentrateonasingleblock,B2inFig.9.19,toillustratetheeffectofthe initial 

approximation of OUT[B2]on IN[ B 2 ] -Let G and K abbreviate e.genB2 and e-

killB2,respectively.Thedata-flow equations forblock B2are 
 

 

 

 

Algorithm9.1 7:  Availableexpressions. 

INPUT:Aflowgraphwith e-killsand e.genscomputedforeachblock B.Theinitialblock isB1. 

OUTPUT: IN [5] and O U T [ 5 ] , the set of expressions available at the entry and exit of each block 

Bof theflowgraph. 
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Figure9.20:  Iterativealgorithmtocomputeavailableexpressions 
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