

Department of CSE Page 1 of 24

UNIT–V

MachineIndependentOptimization.TheprinciplesourcesofOptimization,peepholeOptimization,Introd

uctionto Date flowAnalysis.

UNIT5

MACHINEINDEPENDENTOPTIMIZATION

Eliminationofunnecessary instructionsin objectcode, orthereplacementof

onesequenceofinstructions by a faster sequence of instructions that does the same thing is usually

called "codeimprovement"or "codeoptimization."

Optimizationsareclassifiedintotwocategories.

1. Machineindependentoptimizations:

Machineindependentoptimizationsareprogramtransformationsthatimprovethetargetcode

without taking intoconsideration any properties ofthe target machine

2. Machinedependantoptimizations:

Machinedependantoptimizationsarebasedonregisterallocationandutilizationofspecialmachi

ne-instructionsequences.

ThePrincipalSourcesofOptimization

A transformation of a program is called local if it can be performed by looking only at

thestatementsinabasicblock;otherwise,itiscalledglobal.Manytransformationscanbeperformedatbothth

elocal and globallevels.

Function-Preserving Transformations: There are a number of ways in which a compiler can

improveaprogram without changing thefunction it computes.

: Common sub expression

eliminationCopypropagation,

Dead-code

eliminationConstantfo

lding

CommonSubexpressionselimination:

An occurrence of an expression E is called a common sub-expression if E was

previouslycomputed, and the values of variables in E have not changed since the previous computation.

We canavoidrecomputing theexpression if wecan usethepreviously computed value.

• Forexample

t1: =

4*it2: = a

[t1]t3: =

4*jt4: =

4*it5:=n

t6:=b[t4]+t5

Department of CSE Page 2 of 24

Theabove codecanbeoptimized usingthecommon sub-expressioneliminationas

t1:=4*it2:

= a [t1]t3:

=4*jt5:= n

t6:=b[t1]+t5

Thecommonsubexpressiont4:=4*iiseliminatedasitscomputationisalreadyint1andthevalueofiisnot been

changedfromdefinition to use.

CopyPropagation:

Assignments of the form f : = g called copy statements, or copies for short. The idea behind

thecopy-propagation transformation is to use g for f, whenever possible after the copy statement f: =

g.Copypropagation meansuseof onevariable instead of another.

• Forexample:

x=Pi;

A=x*r*r;

Theoptimizationusing copypropagationcan

bedoneasfollows:A=Pi*r*r;Herethe variablexis eliminated

Dead-CodeEliminations:

Avariableisliveatapointinaprogramifitsvaluecanbeusedsubsequently;otherwise,itisdeadat that

point.

Example:

i=0;

if(i==1)

{

a=b+5;

}

Here, ‘if’statementisdeadcodebecausethisconditionwillnevergetsatisfied.

Constantfolding:

Deducing at compile time that the value of an expression is a constant and using the

constantinstead is known as constant folding. One advantage of copy propagation is that it often turns

the copystatementinto dead code.

Forexample,

a=3.14157/2 can be replaced

bya=1.570

Department of CSE Page 3 of 24

LoopOptimizations:

Inloops, especiallyinthe innerloops, programstend tospendthe bulk of theirtime. Therunning time

of a program may be improved if the number of instructions in an inner loop is decreased,evenif

weincreasetheamount of codeoutsidethat loop.

Threetechniques areimportant forloop optimization:

1. Codemotion, which moves codeoutsidealoop;

2. Induction-variable elimination, which we apply to replace variables from inner

loop.3.Reductioninstrength,whichreplaces expensiveoperationbyacheaperone,suchas a

multiplicationbyanaddition.

Fig.5.2 Flow graph

CodeMotion:

This transformation takes an expression that yields the same result independent of the number

oftimes a loop is executed (a loop-invariant computation) and places the expression before the loop.

Notethat the notion “before the loop” assumes the existence of an entry for the loop. For example,

evaluationoflimit-2 is a loop-invariant computation in thefollowing while-statement:

while(i <=limit-2)

Department of CSE Page 4 of 24

Codemotion willresultin theequivalent of

t= limit-2;

while(i<=t)/*statementdoesnot changelimitort*/

InductionVariables:

Loops are usually processed inside out. For example consider the loop around B3. Note that

thevalues of j and t4 remain in lock-step; every time the value of j decreases by 1, that of t4 decreases

by 4because4*j is assigned to t4. Suchidentifiers are called induction variables.

When there are two or more induction variables in a loop, it may be possible to get rid of all

butone, by the process of induction-variable elimination. For the inner loop around B3 in Fig.5.3 we

cannotgetrid of either j ort4completely; t4 is usedin B3 and j in B4.

However, we can illustrate reduction in strength and illustrate a part of the process of induction-

variableelimination. Eventuallyj willbeeliminated whenthe outerloop ofB2-B5 isconsidered.

Example:

As the relationship t4:=4*j surely holds after such an assignment to t4 in Fig. and t4 is

notchanged elsewhere in the inner loop around B3, it follows that just after the statement j:=j-

1therelationship t4:= 4*j-4 must hold. We may therefore replace the assignment t4:= 4*j by t4:= t4-4.

Theonly problem is that t4 does not have a value when we enter block B3 for the first time. Since we

mustmaintain the relationship t4=4*j on entry to the block B3, we place an initializations of t4 at the

end oftheblock wherej itselfis initialized, shown bythedashed addition toblock B1 in Fig.5.3.

Thereplacementofamultiplicationbyasubtractionwillspeeduptheobjectcodeifmultiplicationtakes

moretime than addition or subtraction

ReductionInStrength:

Reduction in strength replaces expensive operations by equivalent cheaper ones on the

targetmachine. Certain machine instructions are considerably cheaper than others and can often be used

asspecial cases of more expensive operators. For example, x² is invariably cheaper to implement as

x*xthan as a call to an exponentiation routine. Fixed-point multiplication or division by a power of two

ischeapertoimplementasashift.Floating-pointdivisionbyaconstantcanbeimplementedasmultiplicationby

aconstant, which may becheaper.

Department of CSE Page 5 of 24

Fig.5.3B5and B6aftercommonsubexpressionelimination

PEEPHOLEOPTIMIZATION

A statement-by-statement code-generations strategy often produces target code that

containsredundant instructions and suboptimal constructs. The quality of such target code can be

improved byapplying“optimizing” transformations to the target program.

A simple but effective technique for improving the target code is peephole optimization,

Amethod for trying to improving the performance of the target program by examining a short sequence

oftarget instructions (called the peephole) and replacing these instructions by a shorter or faster

sequence,wheneverpossible.

Thepeepholeisasmall,moving windowonthetargetprogram.

Characteristics of peephole

optimizations:Redundant-

instructions eliminationFlow-of-

control

optimizationsAlgebraicsimplification

s

UseofmachineidiomsU

nreachablecode

Department of CSE Page 6 of 24

Redundant-instructionselimination

seetheinstructionssequence

(1) MOVR0,a

(2) MOVa,R0

we can delete instructions (2) because whenever (2) is executed. (1) will ensure that the value

ofa is already in register R0.If (2) had a label we could not be sure that (1) was

alwaysexecutedimmediatelybefore(2)and so wecould not remove(2).

UnreachableCode:

Another opportunity for peephole optimizations is the removal of unreachable instructions.

Anunlabeledinstructionimmediatelyfollowinganunconditionaljumpmayberemoved.Thisoperationcan be

repeated to eliminate a sequence of instructions. For example, for debugging purposes, a largeprogram

may have within it certain segments that are executed only if a variable debug is 1. In C,

thesourcecodemight look like:

#definedebug0

….

If(debug) {

Printdebugginginformation

}

Intheintermediate representationsthe if-statementmaybetranslatedas:

Ifdebug =1 goto L1 goto L2

L1:printdebugginginformationL2: ... (a)

Oneobviouspeepholeoptimizationistoeliminatejumpsoverjumps.Thusnomatterwhatthevalueofdebu

g; (a) can bereplaced by:

Ifdebug≠1 gotoL2

Printdebugginginformation

L2: .. (b)

Ifdebug≠0 gotoL2

Printdebugginginformation

L2: .. (c)

Astheargumentof thestatement of(c) evaluatesto aconstant trueit canbereplaced

Department of CSE Page 7 of 24

BygotoL2.Thenallthestatementthatprintdebuggingaidsaremanifestlyunreachableandcanbeelimina

tedoneat a time.

Flows-Of-ControlOptimizations:

Theunnecessaryjumpscanbeeliminatedineithertheintermediatecodeorthetargetcodebythefollowin

g types ofpeephole optimizations. Wecan replacethe jump sequence

gotoL1

….

L1:gotoL2 (d)

bythesequence

gotoL2

….

L1:gotoL2

IftherearenownojumpstoL1,thenitmaybepossibletoeliminatethestatementL1:gotoL2providedit is preceded

by an unconditional jump.Similarly, thesequence

if a< b gotoL1

….

L1:gotoL2(e)

canbereplacedby

Ifa < b goto L2

….

L1:goto L2

Ø Finally,supposethereisonlyonejumptoL1andL1isprecededbyanunconditionalgoto.

Thenthesequence

gotoL1

L1:ifa < bgotoL2 (f)L3:

maybereplacedby

Department of CSE Page 8 of 24

If a < b goto

L2gotoL3

…….

L3:

Whilethenumberofinstructionsin(e)and(f)isthesame,wesometimesskiptheunconditionaljumpin(f), but

never in (e).Thus (f) is superiorto (e) inexecution time

AlgebraicSimplification:

There is no end to the amount of algebraic simplification that can be attempted through

peepholeoptimization. Only a few algebraic identities occur frequently enoughthat it is worth

consideringimplementingthem. For example, statements suchas

x := x+0

orx := x *

1

areoftenproducedbystraightforwardintermediatecode-

generationalgorithms,andtheycanbeeliminatedeasily through peephole optimization.

ReductioninStrength:

Reduction in strength replaces expensive operations by equivalent cheaper ones on the

targetmachine. Certain machine instructions are considerably cheaper than others and can often be used

asspecialcases of moreexpensive operators.

For example, x² is invariably cheaper to implement as x*x than as a call to an

exponentiationroutine. Fixed-point multiplication or division by a power of two is cheaper to implement

as a shift.Floating-point division by a constant can be implemented as multiplication by a constant,

which may becheaper.

X2 →X*X

Useof MachineIdioms:

The target machine may have hardware instructions to implement certain specific

operationsefficiently. For example, some machines have auto-increment and auto-decrement addressing

modes.Theseaddorsubtractonefromanoperandbeforeorafterusingitsvalue.Theuseofthesemodesgreatly

improves the quality of code when pushing or popping a stack, as in parameter passing. Thesemodescan

also be used in codeforstatements like i : =i+1.

i:=i+1→i++

Department of CSE Page 9 of 24

i:=i-1 → i--

IntroductiontoDateflowAnalysis.

1 TheData-FlowAbstraction

2 TheData-FlowAnalysisSchema

3 Data-

FlowSchemasonBasicBlocks4Reachin

g Definitions

5 Live-VariableAnalysis

6 AvailableExpressions

"Data-flow analysis" refers to a body of techniques that derive information about the flow of data

alongprogramexecution paths.

1. TheData-FlowAbstraction

The execution of a program can be viewed as a series of transformations of the program

state,which consists of the values of all the variables in the program. Each execution of an intermediate-

codestatement transforms an input state to a new output state. The input state is associated with the

programpointbefore the statementand theoutputstateis associated withtheprogram pointafter the

statement.

When we analyze the behavior of a program, we must consider all the possible sequences

ofprogram points ("paths") through a flow graph that the program execution can take. We then

extract,from the possible program states at each point, the information we need for the particular data-

flowanalysis problem we want to solve. In more complex analyses, we must consider paths that jump

amongtheflow graphs for various procedures, ascalls and returns areexecuted.

Within one basic block, the program point after a statement is the same as the program

pointbeforethenext statement.

IfthereisanedgefromblockB1 toblockB22,thentheprogrampointafterthelaststatementofB1may

befollowed immediatelyby the program point beforethefirst statement of B2.

Thus, we may define anexecution path (or just path) from point pito point pn tobea

sequenceofpointspi,p2,... ,pn such thatforeach i =1,2, ... ,n -1, either

1. Pi is the point immediately preceding a statement and pi+i is the point immediately

followingthatsame statement, or

2.piis theend ofsomeblock and pi+1 is thebeginning ofasuccessor block.

Department of CSE Page 10 of 24

.Indata-flowanalysis,wedonotdistinguishamongthepathstakentoreachaprogrampoint.Moreover, we do

not keep track of entire states; rather, we abstract out certain details, keeping only thedata we need for

the purpose of the analysis. Two examples will illustrate how the same program statesmaylead to

different information abstractedat a point.

1. To help users debug their programs, we may wish to find out what are all the values a variable

mayhave ata program point, and where these values may be defined. For instance, we may summarize

allthe program states at point (5) by saying that the value of a is one of {1,243}, and that it may be

definedbyoneof{^1,^3}.Thedefinitionsthatmayreachaprogrampointalongsomepathareknownasreaching

definitions.

2. Suppose, instead, we are interested in implementing constant folding. If a use of the variable x

isreachedbyonlyonedefinition,andthatdefinitionassignsaconstantto x, thenwecansimplyreplace x by the

constant. If, on the other hand, severaldefinitions of x may reach a single programpoint, then we cannot

perform constant folding on x. Thus, for constant folding we wish to find thosedefinitions that are the

unique definition of their variable to reach a given program point, no

matterwhichexecutionpathistaken.Forpoint(5)ofFig.9.12,thereisnodefinitionthat must bethedefinition of

a at that point, so this set is empty for a at point (5). Even if a variable has a uniquedefinitionata

point,thatdefinitionmustassigna constanttothevariable.Thus,we maysimplydescribe certain variables as

"not a constant," instead of collecting all their possible values or all theirpossibledefinitions.

2. TheData-FlowAnalysisSchema

, we associate with every program point a data-flow value that represents an abstraction of the set of

allpossible program states that can be observed for that point.The set of possible data-flow values is

thedomain for this application. For example, the domain of data-flow values for reaching definitions is

thesetof all subsets of definitions in the program.

Department of CSE Page 11 of 24

A particular data-flow value is a set of definitions, and we want to associate with each point in

theprogramthe exactsetof definitionsthatcanreachthatpoint.Asdiscussedabove,the choice ofabstraction

depends on the goal of the analysis; to be efficient, we only keep track of information that isrelevant.

Denotethedata-flowvaluesbeforeandaftereachstatementsbyIN[S]andOUT[s],respectively.Thedata-flow

problem is to find a solution to a set of constraints on the IN[S]'S and OUT[s]'s, for allstatements s.

There are two sets of constraints: those based on the semantics of the statements

("transferfunctions")and thosebased on the flow ofcontrol.

TransferFunctions

The data-flow values before and after a statement are constrained by the semantics of the statement.

Forexample, suppose our data-flow analysis involves determining the constant value of variables at

points.If variable a has value v before executing statement b = a, then both a and b will have the value v

afterthestatement.Thisrelationshipbetweenthedata-flowvaluesbeforeandaftertheassignmentstatementis

knownas atransfer function.

Transfer functions come in two flavors: information may propagate forward along execution paths, or

itmay flow backwards up the execution paths.In a forward-flow problem, the transfer function of

astatement s, which we shall usually denote f(a), takes the data-flow value before the statement

andproducesanew data-flow value after thestatement.That is,

Conversely, in a backward-flow problem, the transfer function f(a) for statement 8 converts a data-

flowvalueafter thestatementto a new data-flowvaluebeforethestatement. That is,

Control– FlowConstraints

The second set of constraints on data-flow values is derived from the flow of control. Within a

basicblock, control flow is simple. If a block B consists of statements s1, s 2 , • • • ,sn in that order, then

thecontrol-flowvalue out ofSi is thesame as the control-flowvalue into Si+i.That is,

However, control-flow edges between basic blocks create more complex constraints between the

laststatement of one basic block and the first statement of the following block. For example, if we

areinterested in collecting all the definitions that may reach a program point, then the set of

definitionsreaching the leader statement of a basic block is the union of the definitions after the last

statements ofeachof thepredecessorblocks. Thenext sectiongives thedetails ofhowdata flows

amongtheblocks.

Department of CSE Page 12 of 24

3. Data-FlowSchemasonBasicBlocks

While a data-flow schema involves data-flow values at each point in the program, we can save

timeand space by recognizing that what goes on inside a block is usually quite simple. Control flows

fromthebeginningtotheendoftheblock,withoutinterruptionorbranching.Thus,wecanrestatetheschema in

terms of data-flow values entering and leaving the blocks. We denote the data-flow valuesimmediately

before andimmediately after each basic block B by m[B] and 0 U T [S] , respectively.The constraints

involving m[B] and 0UT[B] can be derived from those involving w[s] and OUT[s] forthevarious

statements s in Bas follows.

Suppose block B consists of statements s 1 , . . ., sn, in that order.If si is the first statement of basicblock

B, then m[B] =I N [S I] , Similarly, if snis the last statement of basic block B, then OUT[S] =OUT[s„]

. The transfer function of a basic block B, which we denote fB, can be derived by

composingthetransferfunctionsofthestatementsinthe

block.Thatis,letfa.bethetransferfunctionofstatementst.Thenof statement si. Then fB = f,sn, o . . . o f,s2, o

fsl. . The relationship between thebeginningand end oftheblock is

Theconstraintsduetocontrolflowbetweenbasicblockscaneasily be rewritten bysubstituting IN[B] and

OUT[B] for IN[SI] and OUT[sn], respectively. For instance, if data-flow valuesare information about

the sets of constants that may be assigned to a variable, then we have a forward-flowproblemin which

When the data-flow is backwards as we shall soon see in live-variable analy-sis, the equations

aresimilar,but with the roles oftheIN's and OUT's reversed. Thatis,

Unlike linear arithmetic equations, the data-flow equations usually do not have a unique solution.

Ourgoal is to find the most "precise" solution that satisfies the two sets of constraints: control-flow

andtransfer constraints. That is, we need a solution that encourages valid code improvements, but does

notjustifyunsafetransformations— those that changewhat theprogramcomputes.

4. ReachingDefinitions

Department of CSE Page 13 of 24

"Reaching definitions" is one of the most common and useful data-flow schemas. By knowing where

ina program each variable x may have been defined when control reaches each point p, we can

determinemanythingsabout x. Forjusttwoexamples,acompilerthenknowswhether x isaconstantatpoint p,

and a debugger can tell whether it is possible for x to be an undefined variable, should x be usedat p.

Wesayadefinition dreaches apoint p ifthereisa path from the point immediatelyfollowing d to p,

such that d is not "killed" along that path. We kill a definition of a variable x if there isany other

definition of x anywhere along the path .if a definition d of some variable x reaches point p,thendmight

be theplaceat which thevalue ofxused atp was last defined.

Adefinitionofavariable x isastatementthatassigns,ormayassign,avalueto x. Procedureparameters, array

accesses, and indirect references all may have aliases, and it is not easy to tell if

astatementisreferringtoaparticularvariablex.Programanalysismustbeconservative;ifwedonotnote that the

path may have loops, so we could come to another occurrence of d along the path, whichdoes not"kill"d.

know whether a statement s is assigning a value to x, we must assume that it may assign to it; that

is,variable x after statement s may have either its original value before s or the new value created by s.

Forthe sake of simplicity, the rest of the chapter assumes that we are dealing only with variables that

haveno aliases. This class of variables includes all local scalar variables in most languages; in the case

of CandC++, local variableswhoseaddresses havebeen computed at somepoint areexcluded.

TransferEquationsforReachingDefinitions

Startby examining thedetails of asinglestatement. Consideradefinition

Here,andfrequentlyinwhatfollows,+isusedasagenericbinaryoperator.Thisstatement"generates"adefinition

d of variableu and "kills" all the

otherdefinitionsintheprogramthatdefinevariable u, whileleavingthere-

mainingincomingdefinitionsunaffected. Thetransfer functionofdefinitiond thuscan beexpressed as

where gend = {d}, the set of definitions generated by the statement, and killd is the set of all

otherdefinitionsof u in the program.

Thetransferfunctionofabasicblockcanbefoundbycomposingthetransferfunctionsofthestatements

contained therein. The composition of functions of the form (9.1), which we shall refer to as"gen-kill

form," is also of that form, as we can see as follows. Suppose there are two functions fi(x) =gen1U (x-

kill1) andf2(x) =gen2 U(x —kill2). Then

Department of CSE Page 14 of 24

This rule extends to a block consisting of any number of statements. Suppose block B has n

statements,withtransfer functions fi(x) =geni U (x —kilh) for i= 1,2, ... , n.Then the transfer

functionforblockBmay bewrittenas:

Thus, like a statement, a basic block also generates a set of definitions and kills a set of definitions.

Thegen set contains all the definitions inside the block that are "visible" immediately after the block —

werefertothemasdownwardsexposed.Adefinitionisdownwardsexposedinabasicblockonlyifitis

Department of CSE Page 15 of 24

not "killed" by a subsequent definition to the same variable inside the same basic block. A basic

block'skill set is simply the union of all the definitions killed by the individual statements. Notice that

adefinition may appear in both the gen and kill set of a basic block. If so, the fact that it is in gen

takesprecedence,becausein gen-kill form, thekillset is applied beforethe gen set.

Example9 . 1 0: Thegen setforthe basic block

is{d2}sinced1isnotdownwardsexposed.Thekillsetcontainsbothd1andd2,sinced1killsd2and vice

versa.Nonetheless, since the subtraction of the kill set precedes the union operation with thegenset,

theresult of thetransfer functionfor this block always includes definition d2.

Control-FlowEquations

Next, we consider the set of constraints derived from the control flow between basic blocks. Since

adefinition reaches a program point as long as there exists at least one path along which the

definitionreaches, O U T [P] C m[B] whenever there is a control-flow edge from P to B. However,

since adefinition cannot reach a point unless there is a path along which it reaches, w[B] needs to be no

largerthantheunion ofthereaching definitions ofall the predecessor blocks.That is, it issafeto assume

We refer to union as the meet operator for reaching definitions. In any data-flow schema, the

meetoperatoristheoneweusetocreateasummaryofthecontributionsfromdifferentpathsattheconfluenceoftho

sepaths.

IterativeAlgorithmforReachingDefinitions

Weassumethateverycontrol-

flowgraphhastwoemptybasicblocks,anENTRYnode,whichrepresentsthestartingpointofthegraph,andanE

XITnodetowhichallexitsoutofthegraphgo.Since no definitions reach the beginning of the graph, the

transfer function for the ENTRYblock is asimpleconstant function that returns0 as ananswer.Thatis, O

UT [ENTR Y]=0.

Thereachingdefinitionsproblemis definedbythefollowingequations:

Department of CSE Page 16 of 24

These equations can be solved using the following algorithm. The result of the algorithm is the

leastfixedpoint of the equations, i.e., the solution whose assigned values to the IN ' s and OUT's is

containedin the corresponding values for any other solution to the equations. The result of the algorithm

below isacceptable, since any definition in one of the sets IN or OUT surely must reach the point

described. It isadesirable solution, sinceitdoes not includeanydefinitionsthat wecan besuredo not reach.

Al g ori th m 9 .1 1 :Reachingdefinitions.

INPUT:Aflow graphfor whichkills and genBhavebeencomputedfor each block B.

OUTPUT:IN[B]and OUT [B], thesetofdefinitionsreachingtheentryandexitofeachblockBof

theflowgraph.

METHOD:Weuseaniterativeapproach,inwhichwestartwiththe"estimate" OUT[JB]=0 forall B and

converge to the desired values of IN and OUT. As we must iterate until the IN ' s (and hencethe OUT's)

converge, we could use a boolean variable change to record, on each pass through theblocks, whether

any OUT has changed. However, in this and in similar algorithms described later, weassumethat

theexact mechanismforkeeping trackof changesis understood,and weelidethose details.

The algorithm is sketched in Fig. 9.14. The first two lines initialize certain data-flow values.4 Line

(3)starts the loop in which we iterate until convergence, and the inner loop of lines (4) through (6)

appliesthedata-flowequations to every block otherthanthe entry. •

Algorithm 9.11 propagates definitions as far as they will go with-out being killed, thus simulating

allpossible executions of the program. Algo-rithm 9.11 will eventually halt, because for every B,

OUT[B]never shrinks; once a definition is added, it stays there forever. (See Exercise 9.2.6.) Since the

set of alldefinitions is finite, eventually there must be a pass of the while-loop during which nothing is

added

toanyOUT,andthealgorithmthenterminates.WearesafeterminatingthenbecauseiftheOUT'shavenotchange

d, theIN' s will

not change on the next pass. And, if the IN'S do not change, the OUT's cannot, so on all

subsequentpassesthere can beno changes.

The number of nodes in the flow graph is an upper bound on the number of times around the while-

loop. The reason is that if a definition reaches a point, it can do so along a cycle-free path, and

thenumberofnodesinaflowgraphisanupperboundonthenumberofnodesinacycle-freepath.Each

Department of CSE Page 17 of 24

time around the while-loop, each definition progresses by at least one node along the path in

question,andit often progressesby morethan onenode, depending on theorder inwhichthe nodes

arevisited.

In fact, if we properly order the blocks in the for-loop of line (5), there is empirical evidence that

theaverage number of iterations of the while-loop is under 5 (see Section 9.6.7). Since sets of

definitionscan be represented by bit vectors, and the operations on these sets can be implemented by

logicaloperationson thebit vectors,Algorithm 9.11 is surprisingly efficientin practice.

Example9.12:Weshallrepresentthesevendefinitionsd1,d2,•••,d>jintheflowgraphofFig.

9.13 by bit vectors, where bit i from the left represents definition d{. The union of sets is computed

bytaking the logical OR of the corresponding bit vectors. The difference of two sets S — T is computed

bycomplementing the bit vector of T, and then taking the logical AND of that complement, with the

bitvectorfor S.

Shown in the table of Fig. 9.15 are the values taken on by the IN and OUT sets in Algorithm 9.11.

Theinitialvalues,indicatedbyasuperscript0,asinOUTfS]0,areassigned,bytheloopofline(2)ofFig.

9.14. They are each the empty set, represented by bit vector 000 0000. The values of subsequent

passesof the algorithm are also indicated by superscripts, and labeled IN [I?]1 and OUTfS]1 for the first

passandm[Bf and OUT[S]2 for thesecond.

Supposethefor-loop of lines(4)through(6)is executedwith Btakingon thevalues

in that order. With B = B1, since OUT [ENTRY] = 0, [IN B1]-Pow(1) is the empty set, and

OUT[P1]1isgenBl. This valuediffers from the previous value OUT[Si]0 , so

wenow knowthereisa changeon thefirst round (and willproceed

toasecondround).ThenweconsiderB =B2 and compute

Department of CSE Page 18 of 24

This computation is summarized in Fig. 9.15. For instance, at the end of the first pass, OUT [5 2] 1

=001 1100, reflecting the fact that d4 and d5 are generated in B2, while d3 reaches the beginning of

B2andis not killed in B2.

Notice that after the second round, OUT [B2] has changed to reflect the fact that d& also reaches

thebeginning of B2 and is not killed by B2. We did not learn that fact on the first pass, because the

pathfromd6totheendofB2,whichisB3-»B4-

>B2,isnottraversedinthatorderbyasinglepass.Thatis,bythetimewelearnthatd$reachestheendofB4,wehavea

lreadycomputedIN[B2]andOUT[B2] onthe first pass.

There are nochanges in any of the OUTsetsafter the secondpass.Thus, after a third pass,

thealgorithmterminates, with theIN's and OUT's asin the final twocolumns of Fig. 9.15.

5. Live-VariableAnalysis

Some code-improving transformations depend on information computed in the direction opposite to

theflow of control ina program; we shall examine one such example now. In live-variable analysis

wewish to know for variable x and point p whether the value of x at p could be used along some path in

theflowgraph starting at p.Ifso, wesayxisliveat p;otherwise, xis deadat p.

An important use for live-variable information is register allocation for basic blocks. Aspects of

thisissue were introduced in Sections 8.6 and 8.8. After a value is computed in a register, and

presumablyused within a block, it is not necessary to store that value if it is dead at the end of the block.

Also, if allregisters are full and we need another register, we should favor using a register with a dead

value, sincethatvalue does not haveto bestored.

Here, wedefinethedata-flowequationsdirectly intermsof IN [5]and OUTpB], which

representthesetofvariablesliveatthepointsimmediatelybeforeandafterblockB,respectively.Theseequations

can also be derived by first defining the transfer functions of individual statements andcomposingthem

to createthe transfer function of abasic block.Define

1.defBas the set of variablesdefined(i.e., definitely assigned values)in B prior to any use of thatvariable

in B, and useB as the set of variables whose values may be used in B prior to any definition

ofthevariable.

Example 9 . 1 3 : For instance, block B2in Fig. 9.13 definitely uses i. It also uses j before

anyredefinition of j, unless it is possible that i and j are aliases of one another.Assuming there are

noaliases among the variables in Fig. 9.13, then uses2={i,j}- Also,B2clearly defines iand

j.Assumingthereareno aliases, defB2=aswell.

As a consequence of the definitions, any variable in useB must be considered live onentrance to blockB,

while definitionsof variables in defBdefinitely are deadatthe beginning of B.Ineffect,membershipin

defB"kills" any opportunityforavariableto belivebecauseof pathsthat begin atB.

Thus,the equationsrelating defand useto theunknowns INand OUTaredefinedas follows:

Department of CSE Page 19 of 24

The first equation specifies the boundary condition, which is that no variables are live on exit from

theprogram. The second equation says that a variable is live coming into a block if either it is used

beforeredefinition in the block or it is live coming out of the block and is not redefined in the block. The

thirdequation says that a variable is live coming out of a block if and only if it is live coming into one of

itssuccessors.

The relationship between the equations for liveness and the reaching-defin-itions equations should

benoticed:

Both sets of equations have union as the meet operator. The reason is that in each data-

flowschema we propagate information along paths, and we care only about whether any path with

desiredpropertiesexist, ratherthan whethersomething is truealongall paths.

• However, information flow for liveness travels "backward," opposite to the direction of control

flow,becauseinthisproblemwewanttomakesurethattheuseofavariablex atapointp

istransmittedtoallpointsprior to p inan execution path,sothatwe may know atthe prior pointthat x

willhave itsvalueused.

To solve a backward problem, instead of initializing O U T [E N T R Y] , we initialize I N [EXIT]

.SetsI NandO U Thave their rolesinterchanged,anduse anddefsubstitute for genandkill,respectively. As

for reaching definitions, the solution to the liveness equations is not necessarily unique,and we want the

so-lution with the smallest sets of live variables. The algorithm used is essentially abackwardsversion

ofAlgorithm 9.11.

Algorithm9.14:Live-variableanalysis.

INPUT:Aflowgraphwithdef anduse computedforeachblock.

OUTPUT: m[B] and O U T [£] ,the set of variables live on entry and exit of each block B of the

flowgraph.

Department of CSE Page 20 of 24

6.Available Expressions

An expression x + y is available at a point p if every path from the entry node to p evaluatesx + y,

andafterthelastsuchevaluationpriortoreachingp,therearenosubsequentassignmentstoxory.5Forthe

available-expressions data-flow schema we say that a block kills expression x + y if it assigns (ormay 5

N o te that, as usual in this chapter, we use the operator + as a generic operator, not necessarilystanding

foraddition.

assign) x or y and does not subsequently recompute x + y. A block generates expression x + y if

itdefinitelyevaluates x+yand does not subsequently definex ory.

Note that the notion of "killing" or "generating" an available expression is not exactly the same as

thatfor reaching definitions. Nevertheless, these notions of "kill" and "generate" behave essentially as

theydofor reaching definitions.

The primaryuse ofavailable-expression information is for detecting global common subexpressions.For

example, in Fig. 9.17(a), the expression 4 * i in block Bs will be a common subexpression if 4 * i

isavailable at the entry point of block B3. It will be available if i is not assigned a new value in block

B2,orif, as in Fig. 9.17(b),4 * iis recomputed afteri is assigned in B2.

We can compute the set of generated expressions for each point in a block, working from beginning

toendoftheblock.Atthepointpriortotheblock,noexpressionsaregenerated.IfatpointpsetSof

Department of CSE Page 21 of 24

expressions is available, and q is the point after p, with statement x = y+z between them, then we

formtheset of expressions available atq bythe following two steps.

Addto S theexpressiony+ z.

DeletefromSanyexpressioninvolvingvariablex.

Note the steps must bedone in the correct order, as x could be the sameas y or z. After we reachtheend

of the block, S is the set of generated expressions for the block. The set of killed expressions is

allexpressions, say y + z, such that either y or z is defined in the block, and y + z is not generated by

theblock.

E x a m p l e 9.15 : Consider the four statements of Fig. 9.18. After the first, b + c is available. After

thesecondstatement,a— d becomesavailable,but b+c isnolongeravailable,because b

hasbeenredefined.Thethirdstatementdoesnotmake b+c

availableagain,becausethevalueofcisimmediatelychanged.

After the last statement, a — d is no longer available, because d has changed. Thus no expressions

aregenerated,and all expressions involvinga, b, c, ord arekilled.

Wecanfindavailableexpressionsinamannerreminiscentofthewayreach-ingdefinitionsarecomputed.

Suppose U is the "universal" set of all expressions appearing on the right of one or

morestatementsoftheprogram.ForeachblockB, letIN[B]

bethesetofexpressionsinUthatareavailableatthepointjustbeforethebeginningof B. LetOUT[B]

bethesameforthepointfollowingtheendofB. Definee.genBtobetheexpressionsgeneratedbyBand

eJnillstobethesetofexpressionsin U killed in B. Note that I N , O U T , e_#en, and eJkill can all be

represented by bit vectors. Thefollowingequations relatethe unknowns

Department of CSE Page 22 of 24

T he above equations look almost identical to the equations for reaching definitions. Like

reachingdefinitions, the boundary condition is OUT [ENTRY] = 0, because at the exit of the E N T R

Y node,thereareno available expressions.

The most important difference is that the meet operator is intersection rather than union. This operator

isthe proper one because an expression is available at the beginning of a block only if it is available at

theend of all its predecessors. In contrast, a definition reaches the beginning of a block whenever it

reachesthe end ofany oneormoreof its predecessors.

The use of D rather than U makes the available-expression equations behave differently from those

ofreaching definitions. While neither set has a unique solution, for reaching definitions, it is the

solutionwith the smallest sets that corresponds to the definition of "reaching," and we obtained that

solution

bystartingwiththeassumptionthatnothingreachedanywhere,andbuildinguptothesolution.Inthatway,wenev

erassumedthatadefinition d couldreachapoint p unlessanactual pathpropagating d to p could be found.

In contrast, for available expression equations we want the solutionwith the largest sets of available

expressions, so we start with an approximation that is too large andworkdown.

It may not be obvious that by starting with the assumption "everything (i.e., the set U) is

availableeverywhere except at the end of the entry block" and eliminating only those expressions for

which wecan discover a path along which it is not available, we do reach a set of truly available

expressions. Inthe case of available expressions, it is conservative to produce a subset of the exact set of

availableexpressions.Theargumentforsubsetsbeingconservativeisthatourintendeduseoftheinformationisto

replace the computation of an available expression by a previously computed value. Not knowing

anexpres-sion is available only inhibits us from improving the code, while believing an expression

isavailablewhen it is not could causeus to change what theprogram computes.

Department of CSE Page 23 of 24

Example9.16:Weshallconcentrateonasingleblock,B2inFig.9.19,toillustratetheeffectofthe initial

approximation of OUT[B2]on IN[B 2] -Let G and K abbreviate e.genB2 and e-

killB2,respectively.Thedata-flow equations forblock B2are

Algorithm9.1 7: Availableexpressions.

INPUT:Aflowgraphwith e-killsand e.genscomputedforeachblock B.Theinitialblock isB1.

OUTPUT: IN [5] and O U T [5] , the set of expressions available at the entry and exit of each block

Bof theflowgraph.

Department of CSE Page 24 of 24

Figure9.20: Iterativealgorithmtocomputeavailableexpressions

	UNIT–V
	ThePrincipalSourcesofOptimization
	CommonSubexpressionselimination:
	t1: = 4*it2: = a [t1]t3: = 4*jt4: = 4*it5:=n
	t1:=4*it2: = a [t1]t3: =4*jt5:= n
	CopyPropagation:
	Dead-CodeEliminations:
	Constantfolding:
	LoopOptimizations:
	Fig.5.2 Flow graph
	InductionVariables:
	ReductionInStrength:
	Fig.5.3B5and B6aftercommonsubexpressionelimination
	Redundant-instructionselimination
	UnreachableCode:
	#definedebug0
	If(debug) {
	}
	Ifdebug =1 goto L1 goto L2
	Ifdebug≠1 gotoL2
	Ifdebug≠0 gotoL2
	Flows-Of-ControlOptimizations:
	gotoL1
	L1:gotoL2 (d)
	gotoL2
	L1:gotoL2
	if a< b gotoL1
	L1:gotoL2(e)
	Ifa < b goto L2
	L1:goto L2
	gotoL1 (1)
	If a < b goto L2gotoL3
	L3:
	AlgebraicSimplification:
	ReductioninStrength:
	Useof MachineIdioms:
	1. TheData-FlowAbstraction
	2. TheData-FlowAnalysisSchema
	TransferFunctions
	Control– FlowConstraints
	3. Data-FlowSchemasonBasicBlocks
	4. ReachingDefinitions
	TransferEquationsforReachingDefinitions
	Control-FlowEquations
	IterativeAlgorithmforReachingDefinitions
	5. Live-VariableAnalysis
	6.Available Expressions

